HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress.
نویسندگان
چکیده
Tibetan wild barley is a treasure trove of useful genes for crop improvement including abiotic stress tolerance, like drought. Root hair of single-celled structures plays an important role in water and nutrition uptake. Polyethylene-glycol-induced drought stress hydroponic/petri-dish experiments were performed, where root hair morphology and transcriptional characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and drought-tolerant cv. Tadmor were compared. Drought-induced root hair growth was only observed in XZ5. Thirty-six drought tolerance-associated genes were identified in XZ5, including 16 genes specifically highly expressed in XZ5 but not Tadmor under drought. The full length cDNA of a novel β-expansin gene (HvEXPB7), being the unique root hair development related gene in the identified genes, was cloned. The sequence comparison indicated that HvEXPB7 carried both DPBB_1 and Pollon_allerg_1 domains. HvEXPB7 is predominantly expressed in roots. Subcellular localization verified that HvEXPB7 is located in the plasma membrane. Barley stripe mosaic virus induced gene silencing (BSMV-VIGS) of HvEXPB7 led to severely suppressed root hairs both under control and drought conditions, and significantly reduced K uptake. These findings highlight and confer the significance of HvEXPB7 in root hair growth under drought stress in XZ5, and provide a novel insight into the genetic basis for drought tolerance in Tibetan wild barley.
منابع مشابه
Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley.
Root hairs are specialized epidermal cells that play a role in the uptake of water and nutrients from the rhizosphere and serve as a site of interaction with soil microorganisms. The process of root hair formation is well characterized in Arabidopsis (Arabidopsis thaliana); however, there is a very little information about the genetic and molecular basis of root hair development in monocots. He...
متن کاملCharacteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses
The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these r...
متن کاملEFFECT OF SILICON PRIMING ON SEEDLING GROWTH, ROOT XYLEME ANATOMY AND ION ACCUMULATION OF BARLEY (Hordeum vulgare L.) TO ALLEVIATE DROUGHT STRESS
The detrimental drought effects could be listed as the loss in dry weight and silicon is known to enhance crop tolerance to drought by increasing seedling growth and hydraulic conductivity. To investigate the effects of silicon priming (0, 1 and 2 mM as sodium silicate), on seedling growth and root anatomy of three barley cultivars (Khatam, Rihane, and Nimrooz) a laboratory experiment was condu...
متن کاملRegulation of root hair initiation and expansin gene expression in Arabidopsis.
The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of t...
متن کاملGenome-Wide Association Analysis of Aluminum Tolerance in Cultivated and Tibetan Wild Barley
Tibetan wild barley (Hordeum vulgare L. ssp. spontaneum), originated and grown in harsh enviroNment in Tibet, is well-known for its rich germpalsm with high tolerance to abiotic stresses. However, the genetic variation and genes involved in Al tolerance are not totally known for the wild barley. In this study, a genome-wide association analysis (GWAS) was performed by using four root parameters...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 66 22 شماره
صفحات -
تاریخ انتشار 2015